On the Performance of Linear Decreasing Inertia Weight Particle Swarm Optimization for Global Optimization
نویسندگان
چکیده
منابع مشابه
On the Performance of Linear Decreasing Inertia Weight Particle Swarm Optimization for Global Optimization
Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the alg...
متن کاملChaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks
Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...
متن کاملDynamic Inertia Weight Particle Swarm Optimization for Solving Nonogram Puzzles
Particle swarm optimization (PSO) has shown to be a robust and efficient optimization algorithm therefore PSO has received increased attention in many research fields. This paper demonstrates the feasibility of applying the Dynamic Inertia Weight Particle Swarm Optimization to solve a Non-Polynomial (NP) Complete puzzle. This paper presents a new approach to solve the Nonograms Puzzle using Dyn...
متن کاملChaotic Inertia Weight Particle Swarm Optimization for PCR Primer Design
In order to provide feasible primer sets for performing a polymerase chain reaction (PCR) experiment, many primer design methods have been proposed. However, the majority of these methods require a long time to obtain an optimal solution since large quantities of template DNA need to be analyzed, and the designed primer sets usually do not provide a specific PCR product size. In recent years, p...
متن کاملA Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm
Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2013
ISSN: 1537-744X
DOI: 10.1155/2013/860289